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magnitude, and it is affected markedly by different 
dispersion corrections. For example, for the 111 
reflection, applying f~ :u=- l . 31  (Matsushita & 
Kohra, 1974) yields FVAL =-7"62,  a 19% difference 
compared with the result in Table 2 obtained with 
the dispersion correction of Creagh (1988). That part 
of the observed structure factor which gives informa- 
tion about the non-spherical part of the electron- 
density distribution is therefore dramatically affected 
by the magnitude of the dispersion correction. 

Within the limitations of the data, it is possible to 
identify qualitative deformation-density features in 
the interstitial regions of the crystal which, as pre- 
viously noted, have no parallels in either silicon or 
diamond. A better data set is needed to decide 
whether these features are real or are an artefact of 
the present limited data (for example, a result of 
series termination or errors in one or more observa- 
tions). It is envisaged that a better data set would 
have the following features. 

Firstly, as previously noted by Dawson (1967), 
accurately scaled data are vital. In the present analysis 
the two data sets were on different scales which com- 
plicated the merging procedure and added one extra 
variable to the model. Secondly, even greater pre- 
cision should be aimed for. Thirdly, an accurate 
experimental determination of the dispersion correc- 
tion for the appropriate wavelength would remove 
some doubt from the analysis. Collection of data at 
a wavelength for which this correction is very small 
would also lessen this uncertainty. Lastly, a much 
more extensive data set [out to (sin O)/h >-1.0 ~-1 

for example] would remove many of the difficulties 
encountered in the present analysis. 
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Abstract  

Calculations of the integrated diffracted intensity for 
Renninger experiments, i.e. calculations of 0-scan 
profiles scanning through three-beam positions, are 
reported. The fundamental equations of the dynami- 
cal theory are solved by means of an eigenvalue 
procedure and boundary conditions consistent with 
the diffraction geometry. It is shown that for non- 
centrosymmetric structures the three-beam 0-scan 
profiles bear information on both the magnitude, 
defined in the range 0 < - <-180°, and the sign of 

the triplet phase involved in the three-beam interfer- 
ence. In general, the 0-scan profiles can be separated 
into two parts: a phase-dependent part ('ideal' 
profile) due to the interference effect and a symmetric 
phase-independent Umweganregung  or Aufhel lung 
profile due to the mean energy flow in a three-beam 
case. Both parts can be calculated by summing up 
the 0-scan profiles for +~b and -~b, one profile being 
reversed with respect to the three-beam point. As a 
result, the experimentally best suited three-beam 
cases for triplet phase determination should involve 
structure factors of nearly equal magnitude. 
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1. Introduction 

In a recent paper (Hiimmer, Weckert & Bondza, 1989) 
we reported on the direct measurements of triplet 
phases by means of three-beam interference experi- 
ments for two non-centrosymmetric structures. It was 
shown that the shape of the 0-scan intensity profile 
is related to the triplet phase so that the sign of the 
triplet phase and not only its cosine can be deter- 
mined. For example, the 0-scan profiles for triplet 
phases near +90 or -90  ° show typical differences. In 
order to distinguish experimentally between triplet 
phases of +90 or -90  ° it is essential that the structure 
factors involved in the three-beam case have approxi- 
mately the same magnitudes. If this criterion is not 
fulfilled then phase-independent effects of Aufhellung 
or Umweganregung superimposed on the interference 
effect are dominant and it is difficult to extract any 
phase information. 

In order to provide a reliable theoretical basis for 
the experimental results we resumed our calculations 
based on Laue's dynamical theory of three-beam X- 
ray diffraction (cf. Hfimmer & Billy, 1982). We investi- 
gated systematically the influence of the magnitude 
of the structure factors and we varied systematically 
the value of the triplet phase to get an idea of the 
precision of the triplet phases determined from 0- 
scan profiles, when unavoidable phase-independent 
Umweganregung or AuJhellung effects are present, as 
is the case in most three-beam experiments. 

Alternative mathematical descriptions of three- 
beam diffraction related to experimental phase deter- 
mination are, for example, those of Thorkildsen 
(1987) who used Takagi-Taupin equations and of 
Chang & Tang (1988) who used a modified two-beam 
approximation. 

2. Computational  details 

The fundamentals for calculating 0-scan profiles near 
a three-beam case have already been outlined in a 
former paper (Hfimmer & Billy, 1982). Below, this 
paper is referred to as HBI. In some details we have 
changed and improved the computing program, to 
take asymmetric reflection geometries into account. 

In the case of asymmetric diffraction geometries 
the cross sections of the beams depend on the orienta- 
tions of the normals N of the entrance and exit surface 
with respect to the wave vectors K, of the various 
beams. In consequence, the reflectivity in the two- 
beam case must be calculated as (Laue, 1960) 

R = I .l ID.12/I IDol 2, (1) 

with 

= N . S . ,  S.  = 

The y factors are the direction cosines of the wave 
vectors with respect to the inward-pointing surface 

normal. They are positive or negative for Laue and 
Bragg cases, respectively. 

Therefore, in the three-beam case O/h/g new 
amplitudes B, of the wavefields are introduced by 
substitution in equation (8) of HBI (see also Pinsker, 
1978) with the expression 

B. = y.1/2D.. (2) 

Then, the dynamic fundamental equations for the 
three-beam case O/h/g can be written as 

+ s= v=)l 
x Y~ F ( m -  n)(B'~trm, o'. + B~rm. ~,,) = VxB~ 

n 

(3) 
[-( SymVy q- SzmVz) / ~m]Bm q-[r/('ym'~n) 1/2] 

x y F ( m -  n)( ,r. + B =m. = . )  = VxB . 
/1 

with F =  reA2/TrVc of the order of 10-7-10 -s, for m, 
n = 0, h, g. Here re is the classical electron radius, Vc 
the unit-cell volume and F(m) the structure factor 
of reflection m. Sym, Sz,, refer to a coordinate system 
where the x axis is parallel to the surface normal 
N(S~,, = y,,), the z axis lies in the Ko, Kh reflection 
plane and the y axis is perpendicular to x and z. Vy 
and Vz fix the direction of the incident beam. The 
diffraction geometry is fixed by the T factors. The 
unknown eigenvalues Vx give the tie points on the 
dispersion surface. B are the components of the 
wavefield amplitudes for ¢r and o" polarization. ~m, 
O',, are unit vectors. ~,,  is parallel to the 0-h reflection 
plane, ~r,, is perpendicular to ~,,, and S,,. 

The solutions of the fundamental equations depend 
on the diffraction geometry. In a three-beam Laue- 
Laue case* the scattering S matrix is Hermitian. In 
this case, neglect of anomalous dispersion and a 
change of sign of the triplet phase 4' means transposi- 
tion of the S matrix. So the eigenvectors are complex 
conjugates for triplet phases with different signs +4' 
or - 4' (0 < 14'1 < 180 ° for non-centrosymmetric struc- 
tures); i.e., in both cases the wave fields belonging to 
one individual tie point have the same magnitude, 
but their phases are opposite. If there is any Bragg 
case involved the S matrix becomes non-Hermitian. 

In calculating the integrated intensity of the 
primary reflected beam Ia (0) for a 6-scan experiment 
scanning through a three-beam position one encoun- 
ters difficulties with Pendelli~sung effects in the Laue- 
Laue and Laue-Bragg diffraction geometries. The 
intensity oscillates periodically between the beams 
depending on the thickness of the crystal plate. As a 
consequence the 0-scan profile for a given triplet 
phase depends on the thickness. Thus, in cases where 

* Laue-Laue means that both reflections of a three-beam diffrac- 
tion are Laue transmission cases. Bragg-Laue means that the 
primary reflected beam is a Bragg case but the secondary beam is 
a Laue case. 
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the crystal dimensions are anisotropic, it is difficult 
or impossible to extract phase information from the 
profile measurements in Laue transmission cases 
(Thorkildsen, 1987). If one averages over the Pendel- 
li~sung effects (Batterman & Cole, 1964), that is sum- 
ming up intensities of the waves belonging to different 
tie points rather than amplitudes, information on the 
sign of the triplet phase gets lost because of the 
complex conjugate eigenvectors. 

In the Bragg-Bragg and Bragg-Laue geometries 
these difficulties do not arise. If the primary reflection 
is a Bragg-reflected beam no Pendelli~sung effects 
occur for this beam. Therefore, the calculations repor- 
ted in this paper also refer to these geometries. 

The solution of the eigenvalue problem gives the 
relative amplitudes of the wave fields for each 
individual tie point. The absolute amplitudes and 
phases of the excited wave fields for each individual 
tie point are fixed by the boundary conditions leaving 
the triplet phase sum invariant. The amplitudes 
propagating in the K0 direction must add up to the 
amplitude of the incident wave field Do at the entrance 
surface. 

X cjBTo = 13,olDg with p = 7r, tr. 
J 

The cj are complex coefficients for all tie points j. 
The sum of the amplitudes for Laue-diffracted 

waves must be zero at the entrance surface: 

X cjB; =o. 
J 

For Bragg-diffracted beams the boundary conditions 
must be set up at the exit surface: 

~, cjB~,,exp(EzriKj,,.Nt)=O n=h,g; (6) 
J 

t is the thickness of the crystal plate. In general Kj, 
is a complex vector. The reflectivity for the primary 
h reflection is then given by 

= w 12-t- 

For unpolarized incident light it is 

Rh=½(R~+R~). 

The integral intensity Ih (O) is calculated as described 
in detail in HBI. First, the reflectivity Rh(J'-2i, Oj) is 
calculated for each pair of Oi and ~bj. Second, the 
integral intensity of the two-beam profile for each 
0 j=cons tan t  is calculated by summing Ih(0j) = 
~iRh(~'-~i, Oj). Third, Ih(Oj) is convoluted with a 
Gaussian function; its width refers to the divergence, 
the spectral width of the incident beam and other 
broadening effects, like mosaicity. 

3. Results 

All the 0-scan profiles are calculated for a two- 
dimensional infinite crystal plate. Its thickness is 
always 50 Ixm. 

The calculated 0-scan profiles are plotted uni- 
formly. The intensity scale gives the relative change 
of the integrated two-beam intensity. On the 0 scale, 
0 = 0 gives the exact geometrical three-beam position 
where the endpoints of both reciprocal-lattice vectors 
lie simultaneously on the Ewald sphere whose radius 
is given by the mean wave vector inside the crystal 

IK0l= ko [1-½FF(0)] 

with the vacuum wavelength Ao = 1/Ikol. For 0 < 0 the 
second reciprocal-lattice vector terminates inside, for 
0 > 0 it terminates outside the Ewald sphere (in-out 
scan). 

To demonstrate the influence of the magnitudes of 
the structure factors, and the influence of the triplet 
phase, the 0-scan profiles refer to fictitious three- 
beam cases. For each pair in Figs. 1-3 the set of 
structure-factor moduli remains unchanged. The 

(4) phases, however, are arbitrarily adjusted so that they 
add up to the indicated triplet phase, for it is well 
known that the solutions do not depend on the 
individual phases but they depend only on the triple 
phase sum ~b (Ewald & Hrno, 1968). For each three- 
beam case O/h/g the triplet phase is given by ~b = 

(5) - ~(h)  + ~(g)  + ~(h - g), equivalent to th = 
~ ( - h )  + ~(g)  + ~(h - g) if anomalous dispersion is 
not taken into account; that means Friedel's law 
holds: F(±h)=lF(h)lex p @(+h). In each figure 
caption the structure-factor moduli assumed are given 
in the sequence IF(h)l, tF(g)l, IF(h-g)l for the 
primary, secondary and coupling reflections, respec- 
tively. However, to have definite diffraction condi- 
tions the lattice parameters and F(0) of the test sub- 
stance L-asparagine are used: F(0) = 321, a = 5.58, 
b=9 .81 ,  c=11 .79 /~ .  With this value of F(0) the 
chosen crystal thickness of 50 Ixm is approximately 
twice the penetration depth of the primary Bragg- 
reflected beam. All 0-scan profiles are calculated with 
constant diffraction geometry: the reflections h = 040, 
g = 042, the surface normal [010] and the wavelength 
A = 1.54/~ are used. The integrated profiles are con- 
voluted with a Gaussian profile whose full width at 

(8) half height is 5 x 10 -3°.  

The 0-scan profiles for ~b and 180 ° -  ~b are related 
by a mirror line through 0 = 0. So the ' in-out '  0-scan 
profile for ~b is equal to the 'out- in '  profile for 180 ° -  
~b. Therefore, examples in the range 0<_ I 1-< 90° are 
given here, with one exception in Fig. l (a) .  

3.1. Ideal O-scan profiles 

So-called 'ideal profiles' are plotted in Fig. 1. It 
can be seen that the increase and decrease of the 
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two-beam intensity due to constructive and destruc- 
tive interference effects are of equal size. For example, 
the two-beam intensities of the 0 or 180 ° profile are 
equally enhanced or diminished (Fig. la )  and the 
symmetrical increase of the -90  ° profile is equal to 
the symmetrical decrease of the +90 ° profile (Fig. 
lb). These profiles can be explained by the interfer- 
ence between the directly (primary) reflected wave 
and the 'Renninger Umweg' wave if this is the 
dominant process in the three-beam interaction. This 
is also assumed in the modified two-beam approxima- 
tion of Hiimmer & Billy (1986), where these ideal 
profiles are derived by a phase-vector diagram. With 
this construction the typical features of ideal +45 and 
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Fig. 1. Ideal @-scan profiles calculated with (a) ~b = 0 (solid) and 
~b = 180 ° (dashed) and IF(m)l = 16, 28, 40 (re=h, g, h-g); (b) 
q~ =+90 (solid); ~b =-90 ° (dashed); IF(re)l= 16, 20, 40; (c) 
~b = +45 (solid); ~b = -45 ° (dashed); IF(m)[ = 16, 24, 40. 

-45 ° profiles can also be derived. The +45 ° ( -45 ° ) 
profile must have characteristics between those of a 
0 and a +90 ° ( -90  °) profile. Thus the relative increase 
of the +45 ° profile is smaller than the relative decrease 
and vice versa for the -45  ° profile. This is confirmed 
by the calculations shown in Fig. l(c). 

This behaviour can be used to give a quantitative 
definition of an 'ideal profile'. We define a AI curve 
by 

AI(O)=½[I+(O) + I - ( - 0 ) ] .  (9) 

I+(0) means the ' in-out '  0-scan profile for the posi- 
tive (+$) ,  I - ( - 0 )  the 'out-in '  profile for the negative 
(-~b) triplet phase. For an ideal 0-scan profile AI(O) 
should remain equal to one. This is valid for the 
0-scan profiles shown in Fig. 1. 

In calculating the 0-scan profiles of Figs. l ( a ) - (c )  
the moduli of the structure factors of the primary 
reflection F(h), the secondary F(g), and the coupling 
reflection F(h-g)  given in the figure captions are 
chosen so that ideal profiles result. 

3.2. O-scan profiles with Umweganregung and 
Aufhellung 

In discussing these effects we assume for the present 
that the modulus of the structure factor of the coup- 
ling reflection F(h - g )  is approximately equal to that 
of the primary reflection (but see §3.3). Then, 
obviously, the 0-scan profiles depend on the relative 
intensities of the primary and secondary reflection. 
For example, if the primary reflection is much weaker 
than the secondary one, i.e. if the primary reflection 
is (nearly) extinguished (Renninger, 1937), a strong 
enhancement of the two-beam intensity must result 
(Umweganregung). Then the 0-scan profile shows 
only a very small asymmetry as can be seen from 
measurements of other authors (Shen & Colella, 1988; 
Tang & Chang, 1988). On the other hand, if the 
secondary reflection is much weaker than the primary 
one then a strong reduction in the two-beam intensity 
must result (Aufhellung). Therefore, for the calcula- 
tions shown in Fig. 2 we change only the ratio 
F(h) / F(g) with respect to the values used in Fig. 
1 leaving F(h-g) unchanged. 

In Fig. 2 typical Umweganregung profiles and in 
Fig. 3 typical Aufhellung profiles are shown for 
different triplet phases. In each case the AI curve (9) 
is plotted. 

According to the definition the difference between 
the 0-scan profiles and the corresponding AI curve 
leads to ideal profiles. Thus, the profiles with 
Umweganregung and Aufhellung can be separated 
into two parts: (1) the symmetric AI curve, which is 
phase independent for a specific pair ± ~  and which 
represents the Umweganregung or Aufhellung effects; 
and (2) the phase-dependent ideal 0-scan profiles 
which are governed by the interference effect bearing 
the information on the triplet phase. 
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Fig. 2. 0-scan profiles with Umweganregung and the correspond- 
ing AI curves calculated with: (a)  ~b = 0 ° (solid); z~l (dashed); 
IF(m)l = 8, 28, 40; (b) ~ = +90.(dashed);  ~b = - 9 0  ° (dotted); zlI 
(solid); IF(m)]=16 ,  70, 40; (c) ~ = + 4 5  (solid); ~ b = - 4 5  ° 
(dashed); IF(m)l = 8, 28, 40; (d)  AI from ~b = +45 °. 
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F(m) 16, 8, 40; (d)  AI from ~b = +45 °. 
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It should be mentioned that with constant structure- 
factor moduli the magnitudes of the Umweganregung 
and Aufhellung depend on the absolute value of the 
triplet phase. Therefore, in order to obtain ideal 0- 
scan profiles for various triplet phases the structure- 
factor magnitude of F(g) was changed (see Fig. 1). 

In Figs 2(b) and 3(b) the interference effect of the 
+90 ° profile or of the -90  ° profile is overcompensated 
by Umweganregung or Aufhellung effects. In spite of 
this it is possible to extract the triplet phase unam- 
biguously. In Fig. 2(b), for example, as can be seen 
from the AI curve the Umweganregung is +18% and 
the interference effect is -11 and +11% for ~b = +90 
and ~b = - 9 0  °, respectively. 

If the Umweganregung or Aujhellung effects are 
much stronger than the interference effect, then it is 
difficult to extract reliable phase information from 
the 0-scan profiles, particularly if the triplet phase is 
not near 0 or 180 °. 

3.3. Influence of the coupling reflection 

In this section the influence of the magnitude of 
the structure factor F(h-g)  on the ~-scan profile 
will be discussed. Therefore, the parameters of Fig. 
1 remain unchanged except for I F ( h  - g)l. If the coup- 
ling reflection is weak then the interaction between 
the diffracted wave fields is weak. Then it is expected 
that the interference effect is very small and a con- 
siderable Aufhellung should result because the 
incident radiation power will be shared between the 
primary and the secondary reflection. This fact is 
shown in Fig. 4 for a triplet phase of ~b = 0 ° as an 
example. The solid curve is the 0-scan profile calcu- 
lated with a weak coupling reflection (see figure cap- 
tion). Calculation of the AI curve and the ideal 0 ° 
profile (not shown in Fig. 4) yields an interference 
effect of about ±2%, and an Aufhellung effect of 
nearly -5%. 

If the structure factor of the coupling reflection is 
increased the amplitude of the Umweg wave is 
enhanced and, with that, also the interference effect. 
This is shown in Fig. 4 by the dashed profile. The 
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Fig. 4. 0-scan profiles for ~b = 0 ° with different structure-factor 
magnitude of the coupling reflection IF(m)[ = 16, 28, 5 (solid); 
IF(m)l = 16, 28, 70 (dashed). 

result is an ideal 0 ° profile; the interference effect is 
nearly +20%. 

The secondary (g) and coupling ( h -  g) reflections 
are symmetric with respect to their influence on the 
primary diffracted intensity. To make things clearer, 
we discuss their influence separately. 

4. Discussion 

The calculated 0-scan profiles give evidence that in 
general the interference effect, which leads to the 
so-called ideal profiles, is overlaid by Umwegan- 
regung and Aufhellung effects. The latter are indepen- 
dent of the sign of the triplet phase as they can be 
evaluated from the AI curve. 

These effects are self-consistently inherent in the 
dynamic theory. The fundamental equations describe 
the interference between the excited wave fields 
(Laue, 1960). As a consequence, the mean energy 
flow is modulated by the interference according to 
the phase differences. For example, the intensity 
resulting from the interference of two waves with 
amplitudes A~ and A! and phase difference a - / 3  is 
given by 

I = Al exp ia + A 2 exp i/3 2 

= A~ + 32 + 23132 cos (a - /3) .  

A 2 + A 2 gives the mean energy flow, the third interfer- 
ence term gives the modulation. 

In a three-beam case the mean energy flow of the 
h reflection and g reflection is governed by the struc- 
ture-factor moduli IF(n)l, n =0,  h, g, h - g ,  as the 
incident power is shared between the two reflections, 
and these are coupled by F(h-  g). The mean energy 
flow due to these mutual interactions can be described 
by differential equations which have the conservation 
of energy as a fundamental hypothesis (Moon & 
Shull, 1964). As a consequence, the interaction terms 
are taken to be phase independent. If in a three-beam 
case these couplings are well balanced, then no 
change of the two-beam intensity would result, except 
for that due to the interference effects. Thus, this 
situation leads to ideal profiles. 

The calculations based on the dynamic theory 
clearly demonstrate that Umweganregung and Aujhel- 
lung are multiple scattering effects. However, Chang 
& Tang (1988) in a recent paper denoted the 
Umweganregung as 'kinematical diffraction intensity'. 
This is an unfortunate notation, as the kinematic 
interaction neglects any multiple scattering effects. 

The calculations show that the asymmetry of the 
three-beam 0-scan profiles decreases with decreasing 
cos ~b. This fact has been already pointed out by other 
authors (Juretschke, 1982; Shen & Colella, 1988). 

In this work it is repeatedly confirmed that the 
0-scan profiles depend on the sign of the triplet phase 
(+~b) and not on cos ~b. This statement holds without 
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taking into account anomalous dispersion. This point 
is extremely important for the experimental determi- 
nation of the absolute structure (configuration) for 
light-atom structures. 

For the relation between the asymmetry of 0-scan 
profiles and the triplet phase to remain unambiguous 
some restrictions apply. The foregoing results are true 
if the relevant scalar products [cf. (3)] between the 
7r- and g-polarization modes are positive. If this is 
not the case an additional reversal of asymmetry may 
occur (Juretschke, 1984). These conditions must 
therefore be checked in order to avoid misinterpreta- 
tions with respect to the triplet phase. 

From the results and discussion it might be specu- 
lated that triplet phases can be determined experi- 
mentally with relatively high precision, for example, 
by fitting the experimental and theoretical 0-scan 
profiles. However, experimentally the theoretical 
assumptions must then be fulfilled: ideal perfect crys- 
tal with well oriented perfect faces, definite diffraction 
geometry, accurately known structure-factor moduli 
etc. With specimens commonly used for X-ray crystal 
structure determination these requirements can 
hardly be fulfilled. For the measurements we use 
crystals with typical dimension from 0.1 to 0.5 mm 
and grown faces. They are bathed in the incident 
beam. Thus the incident radiation strikes several faces 
and a mixture of primary Bragg and Laue cases 
occurs. In spite of these adversities triplet phases can 
be measured with a precision of at least 45 °, as will 
be shown in the following paper (Hiimmer, Weckert 
& Bondza, 1990). 

Experimentally the Umweganregung and Aufhel- 
lung can be evaluated by comparing 0-scan profiles 
of centrosymmetrically related three-beam cases 
O/h/g and O / - h / - g  which have triplet phases with 
opposite signs but constant structure-factor moduli 
if anomalous dispersion can be neglected. For precise 
phase determination however, the Umweganregung 

or Aufhellung effects must be as small as possible. As 
can be seen from our calculations, ideal profiles result 
if IF(g) and F ( h - g ) [  are about twice as strong as 
IF(h). 

These results were reported at the 1 l th European 
Crystallographic Meeting in Vienna (Weckert & 
Hiimmer, 1988) and in part at the Fourteenth Inter- 
national Congress of Crystallography in Perth (Hiim- 
mer, Bondza & Weckert, 1987; Weckert, Bondza & 
Hiimmer, 1987). 

This work has been funded by the Deutsche For- 
schungsgemeinschaft and the German Federal 
Minister of Research and Technology under contract 
No. 05 363 IAI 4. 
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Abstract  

Recent progress in experimental triplet phase deter- 
mination by the method of three-beam diffraction for 

0108-7673/90/050393-10503.00 

non-centrosymmetric light-atom structures is repor- 
ted. The measurements were carried out with a special 
0-circle diffractometer installed at the DORIS II 
storage ring in Hamburg. Experimental results 
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